Removal and recovery of NO by MnO₂/Mg-Al layered double hydroxide

Tanya Kurutach¹, Yuriko Takahashi¹, Tomohito Kameda^{1, *}, Shogo Kumagai¹, Yuko Saito¹, Keiichi Mizushina², Ichiro Itou², Tianye Han², Toshiaki Yoshioka¹

¹Graduate School of Environmental Studies, Tohoku University, 6–6–07 Aoba, Aramaki, Aoba–ku, Sendai 980-8579, Japan

²Kurita Water Industries Ltd., Nakano Central Park East, 4-10-1 Nakano, Nakano-ku, Tokyo 164-0001, Japan *corresponding author: tomohito.kameda@tohoku.ac.jp

Keywords: Mg-Al layered double hydroxides, Nitrogen oxides, Treatment, MnO₂, Thermal decomposition

INTRODUCTION

The incineration of waste generates exhaust gas containing poisonous nitrogen oxides (NO_x). At present, Selective Catalytic Reduction (SCR) process is used for NO_x removal. But treated product cannot be recycled and the high maintenance cost also become issue. Because of their capable of gas recovery and low price, $CO_3 \cdot Mg$ -Al layered double hydroxides (LDHs) has considerable attention in recent years. From anion exchange ability, they are used as adsorbent for nitrogen dioxide (NO₂) removal, and adsorbed gases can be recovered in wet process¹). However, they cannot remove nitric oxide (NO) contained more than 95 percent of NOx in exhaust gas¹). Therefore, NO must be oxidized to NO₂ for removal. Transition metal oxides have high performances in NO oxidation. Mn based composite oxides are less expensive compared with others, and it has high activity in NO oxidation²). In this study, we investigated the performance of NO treatment by MnO₂/Mg-Al LDH composite and MnO₂ + CO₃ · Mg-Al LDH mixture compared with CO₃ · Mg-Al LDH³⁻⁵). Additionally, NO removed by MnO₂/Mg-Al LDH was examined to recover by thermal treatment.

MATERIALS AND METHODS

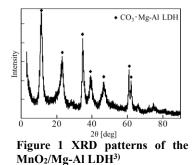
Preparation of MnO₂/Mg-Al LDH

 $CO_3 \cdot Mg$ -Al LDH (Mg/Al molar ratio = 2) was synthesized through co-precipitation and calcined at 500 °C for 2 h to yield Mg-Al oxide. Mg-Al oxide was added to KMnO₄ solution adjusted to Mn/Al molar ratios of 5 and stirred at 300 rpm and 30 °C. N₂ was bubbled into the solution throughout the procedure. After stirring for 6 h, solids were separated from the liquid and dried at 40 °C for 24 h, and MnO₂/Mg-Al LDH was obtained. MnO₂/Mg-Al LDH was analyzed by using X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS).

NO treatment

 MnO_2/Mg -Al LDH composite, $MnO_2 + CO_3 \cdot Mg$ -Al LDH mixture, or $CO_3 \cdot Mg$ -Al LDH were packed in reaction tube preheated to 170°C by electric tuber furnace. The mixed gas (NO: 150 ppm O₂: 10%, N₂: balance) was passed through the adsorbent for 90 min, with the flow rate adjusted by the mass flow controller (linear velocity 1.0 m/min). The residual concentrations were analyzed using a gas analyzer.

NO recovery

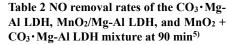

NO removed by MnO₂/Mg-Al LDH was recovered by thermal treatment. Firstly, desorbed temperature was analyzed via Evolved gas analysis-mass spectrometry (EGA-MS). MnO₂/Mg-Al LDH had 1.33 mmol/g of NO,

and the materials were treated at 400-600°C using the above-mentioned apparatus.

RESULTS AND DISCUSSION

Preparation of MnO₂/Mg-Al LDH

Figure 1 and Table 1 show the XRD patterns of the MnO_2/Mg -Al LDH, and its chemical compositions. The XRD patterns indicate that LDH structure presents in the sample, while Mn species was not observed. But it contained 4.2 wt% of Mn, and basal spacing, d_{003} , was 7.6 Å. This suggests that MnO_4^- was intercalated between the LDH layers. XPS analysis indicates that 76.7% of the Mn was Mn (IV). MnO_4^- , intercalated between the LDH layers, was probably reduced to MnO_2 in the interlayer.



NO treatment

Table 2 shows the NO removal rates of the $CO_3 \cdot Mg$ -Al LDH, MnO₂/Mg-Al LDH, and MnO₂ + CO₃ · Mg-Al LDH mixture. After 90 min, the NO removal rates of CO₃ · Mg-Al LDH, MnO₂/Mg-Al LDH, and MnO₂ + CO₃ · Mg-Al LDH mixture are 0%, 1.4%, and 83.9% respectively. The NO removal rates of MnO₂/Mg-Al LDH is notably higher than the others, indicating that a synergistic effect was generated when it becomes composite.

Table 1 Chemical compositions of MnO₂/Mg-Al LDH⁴⁾

Mg/Al	Mn [wt%]	Mn/Al	CO32-/Al	OH-/Al
1.9	4.2	0.19	0.28	0.43

	CO ₃ · Mg-Al LDH	MnO ₂ /Mg-Al LDH		MnO ₂ + CO ₃ ·Mg-Al LDH mixture			
NO removal rate [%]	0	1.4		100			
Table 3 NO recovery							
		400°C	500°	C 600°C			
Recovery	rate [%]	1.0	46.2	2 100			

NO recovery

EGA-MS result of MnO_2/Mg -Al LDH after NO removal shows Recovery rate [%] 1.0 46.2 100 that NO peak was observed over 400 °C. NO recovery at 400-600 °C are shown in table 3. NO recovery performed at 600 °C presents 100% of recovery rate that significantly higher than 500 °C and 400 °C.

CONCLUSION

NO treatment by MnO₂/Mg-Al LDH composite has higher performance than $CO_3 \cdot Mg$ -Al LDH and MnO₂ + $CO_3 \cdot Mg$ -Al LDH mixture and denote 83.9% of removal rate. Moreover, trapped NO gas can be recovered 100 % at 600 °C.

REFERENCES

- Kameda T., Yoshioka T. et al., Treatment of NOx using recyclable CO₃²⁻-intercalated Mg–Al layered double hydroxide, Atmos. Pollut. Res., 10, 1866–1872, 2019.
- 2) Kameda T., Yoshioka T. et al., Treatment of NO by a combination of MnO₂ and a CO_{3²⁻}-intercalated Mg–Al layered double hydroxide, S.N. Appl. Sci., 2, 1075, 2020.
- Takahashi T., Kameda T., Yoshioka T. et al., Synthesis of MnO₂/Mg-Al layered double hydroxide and NOremoval, Proceedings of the conference of JSMCWM, 333-334, 2019
- Takahashi T., Kameda T., Yoshioka T. et al., Treatment of acidic gas by MnO₂/Mg-Al LDH, Proceedings of the conference of JSMCWM, 273-274, 2020
- 5) Takahashi Y., Kameda T. Yoshioka T. et al., Synthesis of MnO₂/Mg-Al layered double hydroxide and evaluation of its NO-removal performance, J. Alloys Compd., in press.